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Fast algorithms for simulating mathematical models of coupled blood-tissue transport and
metabolism are critical for the analysis of data on transport and reaction in tissues. Here, by
combining the method of characteristics with the standard grid discretization technique, a
novel algorithm is introduced for solving a general blood-tissue transport and metabolism
model governed by a large system of one-dimensional semilinear first order partial differ-
ential equations. The key part of the algorithm is to approximate the model as a group of
independent ordinary differential equation (ODE) systems such that each ODE system has
the same size as the model and can be integrated independently. Thus the method can be
easily implemented in parallel on a large-scale multiprocessor computer. The accuracy of
the algorithm is demonstrated for solving a simple blood-tissue exchange model intro-
duced by Sangren and Sheppard [W.C. Sangren, C.W. Sheppard, A mathematical derivation
of the exchange of a labeled substance between a liquid flowing in a vessel and an external

Parallel computation
System of first order semilinear PDEs
Initial-boundary value problems

compartment, Bull. Math. Biophys. 15 (1953) 387-394], which has an analytical solution.
Numerical experiments made on a distributed-memory parallel computer (an HP Linux
cluster) and a shared-memory parallel computer (a SGI Origin 2000) demonstrate the par-
allel efficiency of the algorithm.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Oxidative energy metabolism in cells, including ATP synthesis from carbohydrate and fatty acid substrates, is coupled to
the delivery of oxygen by the microcirculation. Since oxygen is highly extracted from the blood and is consumed rapidly in
many tissues, oxygen tension in cells varies spatially — from approximately 100 mmHg near the inflow into capillaries to as
low as 10-20 mmHg near the outflow in metabolically active tissues such as the myocardium [3,24]. Therefore, the transport
of oxygen, and other key solutes, to tissue is an inherently spatially distributed process, captured by partial differential trans-
port equations. Simulation of blood-tissue solute exchange finds applications in analyzing experimental data on cell and
tissue/organ function during changing physiological conditions such as ischemia (low blood flow), hypoxia (low oxygen sup-
ply), and exercise (high energy demand) [4-7,10]. Such modeling is also useful in the analysis of experimental data from
tracer studies involving tracer-labeled '°0- and '70-oxygen and other substrates. Understanding the transport of tracer
150-oxygen, and its metabolic byproduct tracer >0 water, is important in interpreting results from positron emission tomog-
raphy imaging used to discover functional information relating to local perfusion and metabolism in the heart [11,20]. Sim-
ilarly, understanding the effects of changing blood flow on local bulk oxygen concentration is important in interpreting the
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physiological significance of blood-oxygen-level-dependent contrast magnetic resonance imaging [17] and 70 nuclear mag-
netic resonance imaging [23] of the working brain.

The classical Krogh cylinder model [18] (a single cylindrical tissue supplied by a single cylindrical capillary) has been the
basis for most of the theoretical studies on microcirculatory oxygen transport [7,10,11,20,24] in which the transport of oxy-
gen is governed by a system of one-dimensional nonlinear partial differential equations (PDEs). The governing PDEs can be
parabolic or hyperbolic depending on whether molecular diffusion in the direction of blood flow is or is not considered. Fur-
thermore, when oxygen transport is coupled with the cellular metabolic processes, the governing PDEs can be highly non-
linear and the number of governing PDEs can increase to the order of tens or even hundreds depending on the number of
chemical species modeled, resulting in a computationally expensive model [4,10,31-33]. Therefore, fast efficient numerical
solutions of the governing PDEs are important for the analysis of experimental data, which requires repeated computation of
solutions of the governing PDEs and comparison of the experimental data to the corresponding model outputs.

Currently, the most useful numerical procedure for solving the one-dimensional microcirculatory advection-diffusion-
reaction models is the Lagrangian sliding fluid element algorithm (also known as the blood-tissue exchange or BTEX algo-
rithm) of Bassingthwaighte et al. [2]. This algorithm works well for small-scale systems involving only few chemical species,
as in the models of Bassingthwaighte and co-workers [7,10,11,20]. However, this algorithm works considerably slowly for
large-scale systems such as for the Beard model of coupled blood-tissue transport and metabolism [4], and is difficult to par-
allelize. Consequently, the algorithm is computationally expensive for the analysis of experimental data with complex trans-
port-metabolism models. The present work was motivated in part to improve and generalize this BTEX algorithm such that
the resulting generalized BTEX algorithm can be easily implemented in parallel on a large-scale multiprocessor computer,
making it suitable for rapid numerical solutions of large-scale one-dimensional microcirculatory advection-diffusion-reac-
tion models. Specifically, rapid numerical solutions of the recently developed coupled blood-tissue transport-metabolism
model of Beard [4] are sought, which simulates advective oxygen transport and oxidative energy metabolism by a system
of 30 semilinear first order PDEs. This model does not account for the axial diffusion of chemical species, has the constant
coefficient of the spatial derivative term (i.e., a constant axial blood velocity) and the nonlinear reaction terms that arise from
the contribution of cellular metabolic processes (the source or sink terms in the PDEs), and does not produce any singularity
problem that may occur in a system of semilinear PDE of first order [21].

Here, such coupled blood-tissue transport-metabolism models are formulated as a general blood-tissue exchange (BTEX)
model governed by a system of semilinear PDEs of first order, along with the boundary and initial conditions. We then prove
that this general BTEX model has a unique solution under the assumptions that both the boundary and initial value functions
are continuous and bounded, and the nonlinear reaction terms are continuous and satisfy a Lipschitz condition in the solu-
tion. Based on this analysis, a novel numerical algorithm is developed to numerically solve this general BTEX model using the
characteristic line and standard mesh discretization techniques. The key part of this algorithm is to approximate the model
as a group of independent ordinary differential equation (ODE) systems at the discretized spatial mesh points such that each
ODE system has the same size as the model and can be solved independently by a standard ODE numerical integrator. Due to
this, this algorithm can be simply implemented on a parallel computer by a domain decomposition strategy [30]. For clarity,
this new algorithm will be called the generalized BTEX algorithm since it is designed particularly for numerically solving
large-scale general BTEX models involving transport and metabolism, and is more efficient than the original BTEX algorithm
of Bassingthwaighte et al. [2].

Semilinear PDE problems of the sort that arise from coupled blood-tissue transport-metabolism modeling can also be
solved by the method of lines, a general procedure for solving time-dependent one-dimensional PDEs [15,27,28]. In the
method of lines, the model is approximated as only one system of ODEs in which the size becomes nN, where N is the num-
ber of differential equations in the BTEX model, and n is the number of spatial grid points required for spatial approximation.
The number n may need to be large to achieve sufficient accuracy in the spatial approximation. Since most stiff ODE solvers
are implicit, requiring solving large-scale nonlinear algebraic systems at each time step, solving such large ODE system may
become computationally costly and challenging in parallel implementation. In contrast, the generalized BTEX algorithm
approximates the model as n independent small ODE systems with size N (e.g. N = 30 in the Beard model [4]), it is a natural
parallel algorithm, and each small ODE system can be efficiently solved by using a high-order stiff ODE integrator such as an
one-step implicit Runge-Kutta method [13,14] or a multi-step BDF (backward differentiation formula) method [9].

To study the accuracy of the generalized BTEX algorithm, a simple BTEX model introduced by Sangren and Sheppard [26],
which can be solved analytically to obtain the exact solution, is analyzed here. Both the generalized BTEX algorithm and the
method of lines were applied to solve the Sangren-Sheppard model and the numerical solutions were compared to the ana-
lytical solution. Results show that the numerical solutions from the generalized BTEX algorithm match the analytical solu-
tion with a much higher accuracy than those obtained from the method of lines.

Finally, a parallel program package was developed in Fortran 77 based on the Livermore ODE Solver DLSODES [16,25] and
Message Passing Interface (MPI) library [1]. This package was applied to Beard model simulating advective oxygen transport
and oxidative energy metabolism by a system of 30 one-dimensional semilinear first order PDE equations [4]. The program
package was tested on a distributed-memory parallel computer (an HP Linux cluster at the Medical College of Wisconsin)
and a shared-memory parallel computer (an SGI Origin 2000 at the University of Wisconsin-Milwaukee) with up to 16 pro-
cessors. Numerical results demonstrate good parallel performance on both computers.

The remainder of the paper is organized as follows. Section 2 introduces the general BTEX model. Section 3 describes the
generalized BTEX algorithm. Section 4 discusses its parallel implementation. Section 5 studies the accuracy of the numerical
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solutions produced by the method. Section 6 discusses the parallel performance of the algorithm. Finally, conclusions are
made in Section 7.

2. A general blood-tissue exchange model

In this section, we define a general blood-tissue exchange (BTEX) model involving transport and metabolism based on the
following basic assumptions: (1) concentrations of chemical species vary primarily along the capillary length within the cap-
illaries, interstitial fluid (ISF) space, and parenchymal cells domain; (2) advective transport happens only in the capillary re-
gion; and (3) transport between regions (capillaries, ISF, and parenchymal cells) and cellular metabolism is governed by
suitable nonlinear functions of species concentrations.

Let {u;(x, )}, and {u;(x, t)}jN: v, 41 D€ the functions representing the concentrations of chemical species in the capillary
and tissue (ISF or parenchymal cells) regions, respectively. They are defined on the domain D= {(x, t)-0<x <L, 0<t<T},
where L is the length of capillary, and T is the length of time. Then the general blood-tissue exchange model is defined by
Ly a0 = fi(e,x,u), i=1,2,...,Ny,
8“16ft =fit,x,u), j=N;y+1,N;+2,...,N, )
u(x,0) = @, (x), k=1,2,... N (initial conditions),

u;(0,t) =g;(t), i=1,2,...,N;(boundary conditions),

du X

where a > 0 is the speed of blood transport in the capillary, u = (uy, uy, ..., uy), fj is a nonlinear function representing either a
passive permeation between the domains or a flux through a biochemical reaction in the cellular domain, or a combination
of both, ¢, is a given initial function, and g; is a given boundary function at x = 0. In small blood vessels and capillaries (micro-
circulation), the blood is usually squeezed through the system, in which the flow can be approximated as plug flow. There-
fore, the speed of blood transport in such systems is usually considered constant [2,3]. For example, in [4], the speed a of
blood transport was estimated by the formula a = /’FL , where F is the blood flow in the capillary expressed in the units of vol-
ume per unit time per unit mass of the tissue, p is the tissue density in mass per unit volume, and V; is the volume of the
capillary region.

The model proposed in [4] is a special case of Eq. (1) with N; =1 and N = 30, considering only oxygen transport in the
capillary region. In that model, three equations describe oxygen transport within three-regions of the cardiac tissue - the
capillary, the ISF region, and the cellular (myocyte) region, while the other 27 equations describe cellular energy metabolism.
In this model, the transport of other species (such as glucose, fatty acids, and amino acids) was not considered within the
capillary blood region. Additional species in the advecting (blood) region can be studied with models with N; > 1.

The independent variables x and t usually do not appear explicitly in the functions f;, and f; may be an implicit function of
some unknown functions u;. For example, in [4], the nonlinear term f; is given by

fi(ug,u2) = —c1P — couy, (2)

where c; and ¢, are two given constants, and P is a function of u; defined implicitly by the nonlinear equation

18

3)

where « is the oxygen solubility coefficient in blood, g is the product of the hematocrit with the concentration of oxygen
binding sites in red blood cells (hemoglobin), y is the partial pressure of oxygen for half saturation of hemoglobin, and o
is the Hill exponent. Here P indicates the oxygen partial pressure in the capillary. In [4], the constants were set as
o=1.3 x 10°° M mmHg~!, y = 30.0 mmHg, §=0.45 x 0.0213 M, and ¢ = 2.5.

To solve Eq. (3) for P, we rewrite it in the standard form

aP”! + (B — ug)P? +ayP — y°u; =0, (4)

and then solve it by the Newton-Raphson iterative method:

k
pk+1) — pk) ‘/’(P()) k=0,1,2

where P'? is an initial guess (e.g. X%’ = 0), Y(P) is a function of P defined by the left-hand side of Eq. (4), and v/(P) denotes its
derivative. The kth iterate P¥) is selected as a value of P for calculating f; in Eq. (2) provided that it satisfies the termination
rule

Wy (PY)| < €]y(P?)] + €,

where €, and €, are the relative and absolute error tolerances, respectively (e.g. €, = €, = 10*6).

The general BTEX model actually consists of N; semilinear hyperbolic equations and N-N; semilinear first order PDEs con-
taining only the derivatives with respect to time t. Its solution existence and uniqueness can be proved similarly as the case
of semilinear first order hyperbolic systems [21] under the following assumptions: g(t) and ¢ (x) are continuous and



D. Xie et al./Journal of Computational Physics 228 (2009) 7850-7861 7853

bounded on [0,T] and [0,L], respectively, and f; is continuous on the domain D = {(x, t, u)[0 < t < T, 0 < x < L, u € RV} and sat-
isfies the following Lipschitz condition

[fx,t,u) — fi(x,t, v)| < L|ju — v for all x € [0,L],t € [0,T),u,v e R", k=1,2,...,N, (5)

where £ is Lipschitz constant, u = u(x,t), v=(x,t), and || - || is a fixed norm on R". The key step of the proof is to use the
method of characteristics to reduce the boundary initial value problem (1) to integral equations and then use the Picard
method to define sequences of functions that converge to the solutions. The details of the proof is beyond the scope of
the present paper and will be reported in a subsequent paper.

3. Generalized BTEX algorithm for solving the general BTEX model

This section describes the generalized BTEX algorithm for solving the general BTEX model of Eq. (1). As described in Sec-
tion 2, the blood speed a is considered as a constant and the source functions f; are expressed as fj(u).

The generalized BTEX numerical algorithm is defined on a special grid mesh of the domain D with the spatial and time
step sizes h and t satisfying © = h/a. By using h = L/n, the grid points (x;, t;) of this grid mesh are defined by x;=jhand t;=it
such that

O=to<ti<ty< - <tp=T, 0=X<X1 <Xp<---<Xp=L, (6)

where n is a given positive integer, and m is the integer closest to the real number (aTn)/L. See Fig. 1 for an illustration of the
grid mesh with n=4 and m=6.

Clearly, for 0 < t < t;, a characteristic line that starts at x = x, can be expressed by a linear function of t in the form
x=at+x, for k=0, 1, 2,..,n — 1. When the functions u;(x,t) for i=1, 2, ...,N; are restricted to these characteristic lines,
we have that

duj(at +x;,t) a ou;(at + Xy, t) . ou;(at + X, t)

dt - X ot
Thus, the first N; equations of (1) are converted to the ODEs without any errors:
du;(at + X, t
% = fi(ur(at + X, t), Uz (at + X, t), . .., un(at + X, t)), (7)

where i=1, 2,...,N; and 0 < t < t;. Here we have taken an advantage of the characteristic line approach for solving one-
dimensional hyperbolic PDEs [29].

The other equations of Eq. (1) do not involve any partial derivatives with respect to the spatial variable x. They can be
converted to ODEs along the vertical mesh lines x = x;:

de(Xk, t)
dt

for 0 <t<ty, wherej=N;+1N;+2,..,N.
Next, we can obtain the following fact: If uj(x,t) is Lipschitz-continuous in the sense that there exists a constant £ > 0
such that [u;(x, t) — u;(y, )| < L|x — y| for all x, y € (0,L), then for any t € [t; ti+1],

|UJ‘(X]<, t) — uj(a(t - ti) + Xk, t)| <L a|t - ti| <Lat=L h,

= fi(u1 (X, £), Up (X, £), ..., Un(Xk, £)) (8)

where j=1, 2,..,N, and t = h/a has been used.

Based on the above fact, we claim that uj(a(t — t;) + X, t) can be well approximated by uj(x, t) for t; <t < tjq if h is suffi-
ciently small. Hence, for i = 0,ty = 0, and uj(at + X, t) can be approximated as uj(x,t) for j=N; + 1,N; +2,.. ,N; thus, Eq. (7) is
modified as

ts |-

ta [

ts [~

1

t1

> X

0 X X2 X3 L

Fig. 1. An example of the grid mesh (n =4 and m = 6) used by the generalized BTEX method.
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du;(at + x, t)

i = fi(ur (@t + X, t), ..., Uy, (At + Xy, t), Un 1 (Xk, ), .., Un(Xk, 1)) 9)

for 0 < t < ty. Naturally, the functions uj(at + x,,t) for i=1,2,...,N; defined in Eq. (9) can be employed to modify Eq. (8) as
du; (X, t

% = fiur(at + X, t), ..., Uy, (Gt + Xy, t), Uy, 1 (Xk, £), ..., Un(Xk, £)). (10)

Consequently, a combination of Egs. (9) and (10) with the initial conditions u;(xx, 0) = ¢(x,) gives the n initial value prob-
lems that provide a numerical approximation to the general model of Eq. (1) on 0 < t < t; and 0 < x < L. These n initial value
problems can be expressed in the vector form: For k=0,1,2,...,n -1,

{%—f(ﬂkh for 0 <t<t,
() = @(x),

where @(x) = (@;(x), P5(X),..., On(X)), W(t) = (U1 (At +Xi, t), ..., un, (A + Xi, 1), Un, 11 (X, £), ... Un(Xk, 1)), and fTk) = (f1(T),
fo(Q), . . ..fa(0g)). From the construction process of Eq. (11) it is easy to see that these n initial value problems are independent
of each other. Hence, they can be solved independently by a numerical ODE algorithm, yielding an approximation of {i,(t) at
t = t;. This completes the description of the first time step of the generalized BTEX method.

To illustrate the independence of these ODE systems, we display an example of (11) with N=2, N; = 1, and the grid mesh
with h=L/4 (i.e., n=4) as shown in Fig. 1. The general BTEX model problem is now approximated as the following four ODE
systems: For k=0,1,2,3,

(11)

WX — f (g (at + Xy, £), Uz (X, ),

B0l — f) (uy (at + X, £), Uz (X, 1)), 0 < E< by,
U1 (X, 0) = @ (Xk),

Uz (X, 0) = @y (X),

where x, = kh for k = 0,1,2,3. Clearly, these four ODE systems are defined on four different sets of line segments with each set
containing two different line segments. For example, in the ODE system with k = 0, the first equation is defined on the line
segment x = at for 0 < t < t; while the second one on the vertical line segment x = 0 for 0 < t < t;, solving them gives numer-
ical solutions u(x1,t1) and u,(0,t;). For the ODE system with k = 1, the first equation is defined on the line segment x = at + x;
for 0 < t < t; while the second one on the vertical line segment x = x; for 0 < t < t;. Clearly, they are completely independent
from the equations of the first ODE system. Similarly, we can see that they are independent from other two ODE systems too.
Hence, they can be solved independently to get numerical solutions u(x,,t;) and uy(xq,t1).

In the ith time step of the generalized BTEX method for i=1,2,...,m — 1, the general BTEX model of Eq. (1) is solved
approximately on t; < t <ty and 0 < x <L as n independent ODE initial value problems. Let Uj‘iyk denote a numerical value
of u;(xy, t;), which has been computed in the previous time step over t;; < t < t; with i > 1, and the vector function {(t) be
defined by

ﬂk(t) = (U1 (a(t — fi) + Xk, t), R UN1 (a(t — ti) + Xk, f), UN1+1 (Xk, t), R UN(Xk7 t)) (12)
Using UJ’:‘,C and the boundary conditions at x = 0 of (1), we can construct the initial conditions at t = t; as below:
e (t) = wj,

where )}, are determined by the general formula:

®(Xx) ifi=0
a);( — J (& (t:), & (k) -, &N, (i), U5v1+1.07 U5v1+2,07 - -vU}v,o) if k=0andi>1 (13)
( LU UL ;,‘k) ifk>1andi> 1.

Similar to the construction of Eq. (11), we then can obtain the n independent ODE initial value problems in vector form as
follows: For k=0,1,2,...,n -1,

Wll) — f(dy) for t; < £ < tiya, (14)
U(ti) = O},

where i=0,1,2,...,m — 1, and the initial values w}, are defined in Eq. (13).
Since a(tiq—t;) + X, = at + x; = h + x; = X1, the value of the vector function G,(t) defined in Eq. (12) at t = t;+; becomes

Ug(tis) = (U1 (Keeg1, L), - Ung Rt Ein ), Ung 01 (R Eir ), - -+ UN (X, B )
Thus, solving Eq. (14) produces the following numerical values:

feaforj=1,2,... Ny, and U} forj=N;+1,N;+2,....N. (15)

Jk+1
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In other words, the first N; numerical values have been slid one step forward from x; to x,.; while the time is changed
from ¢; to ;.. This phenomenon was used in [2] and referred to as the lagrangian sliding fluid element.

4. Parallel implementation of generalized BTEX algorithm

Computer implementation of the generalized BTEX algorithm is straightforward. On a sequential computer, we assume
that one global two dimensional array, U[1:N,0:n — 1], is used to store both input and output numerical values in solving
the ODE initial value problems of Eq. (14) at each time step i=0,1,2,...,m — 1. Most ODE solvers are designed in this
way. In the input step at t=t; _ 1, we set U[j, k] := U}f,f forj=1,2,..,Nand k=0,1,2,...,n — 1. Here the symbol “:=" denotes
the assignment operation in the computer program. Because of Eq. (15), in the output step at t = t;, U will hold the following
numerical values for k=0,1,2,...,n — 1:

UK = Uy, forj=1,2,...,Ny, and UJj.K| = U, forj= Ny +1,Ny +2,...,N. (16)

i
Jk+1

Hence, an adjustment of the array U has to be done to get the initial values }, as given in Eq. (13) for solving Eq. (14) from
t; to ti+q. As the result of Eq. (16), in the input step at ¢t = t;, only need the first N; rows of array U be updated:

Uj,0) := g(t;) and U[j,1:n—1]:=U[j,0:n—2] forj=1,2,....N;. (17)

The generalized BTEX method can be easily implemented in parallel based on either a shared-memory programming
model in OpenMP [8] or a distributed-memory programming model in MPI [1,12]. With OpenMP, a sequential program of
the generalized BTEX method can be easily parallelized by only adding a compiler directive before the “parallelizable” spatial
step loop of k for k=0,1,2,...,n — 1, which involves the numerical solutions of n independent ODE initial value problems. To
efficiently implement the generalized BTEX method in MPI on a distributed-memory parallel computer (including a cluster
of PCs), we need to explore its data-distribution and data communication explicitly as shown below. Such a MPI program
works well on a shared-memory parallel computer too.

Let p be the number of processors to be used in the parallel implementation. In each time step of i fori=0,1,2,...,m — 1,
the n independent ODE problems of the k-loop can be partitioned into p independent groups such that each group contains
almost the same number of ODE problems based on a simple domain decomposition strategy. That is, the (n + 1) spatial grid
points {x;}}, of the spatial domain [0,L] are partitioned into p equally-sized subsets, Qi = {X;[j = ng_1+1,n_1 + 2,...,n;} for
k=1,2,...,p, such that the ODE initial value problems related to Q, are assigned to processor k for calculation. Here
n,=k(n+1)/p—1 is assumed to be a positive integer. To reduce the memory cost, the global array U[1:N,0:n] is also split
into p sub-arrays such that processor k contains only sub-array U[1:N,n,_; + 1:n,] for storing the local numerical values. Fur-
thermore, the array updating job of Eq. (17) is also split into p parts as given below:

Part 1: do U[},0] := g(t;) and U[j, 1:n4] := U[j,0:n;—1] for j=1,2,.. . ,Ny.
Part k: do U[1:Nq,n,_q + 1:ng] := U[1:Nq,ig_1:m—1] for k=2,3,...,p.

However, the updating job of Part k on processor k involves the entries U[1:N1,1,_1] that are located on processor k — 1 for
k=2,3,...,p since processor k contains only the local array U[1:N,n,_; + 1:n;]. The update cannot be completed until the en-
tries U[1:Ny,ny.1] are calculated and sent out by processor k — 1 and received by processor k. This is the only place that re-
quires interprocessor data communication operations in the parallel implementation of the generalized BTEX method.
Hence, the total amount of data required for interprocessor communications is small. But, since the work required to solve
the different ODE initial value problems may be different, different processors may produce different CPU times to finish the
job even though they are assigned the same number of ODE initial value problems. This potentially unbalanced work load
problem may affect the parallel performance of the generalized BTEX method. One possible solution is to solve each ODE
system by a high order one-step stiff ODE solver, such as the Radau IIA method [13,14], in a fixed number of steps.

For clarity, a piece of pseudo code in MPI is given in Algorithm 1 to illustrate the parallel implementation of the general-
ized BTEX algorithm. It is written in the SPMD (single-program, multiple-date) style. That is, the same program code is
implemented on all available processors while each processor has different data and thread of controls. The SPMD style is
widely used in practice for shared or distributed memory. In Algorithm 1, we mention the names of MPI functions that
we used in our MPI program but ignore the details since the details of their usages can be found in [1,12] or on the MPI forum
web at http://www.mpi-forum.org.

Algorithm 1 (Parallel BTEX Pseudo-program in MPI). Let the p processors be labeled from 0 to p — 1, n be selected to make the
ratio N, = (n + 1)/p a positive integer, and ODEsolver(Y, ti,, to,:) denote an ODE solver program routine. Here Y = Y[1:N] is a real
array with N entries, which holds the initial solution G(t;,) in the input and the final solution G,(t,,,) in the output of the ODE
solver program routine.

1. Create a new communicator for the p processors with the one-dimensional Cartesian topology by MPI function
MPI_CART_CREATE, get the rank M, of calling processor in the new communicator by MPI_COMM_RANK, and define
the left and right neighboring processors of calling processor by MPI_CART_SHIFT.
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2. Set i=0, define the k-loop for k=N to N,, and input the initial values by U[1:N,k] := ¢(x;) for k=N, to N,, where
Ns=1+M,Np, No=(M.+1) Np, and Ne=n if Mo =p — 1.
3. Do the following k-loop to solve the N, ODE initial value problems of Eq. (14) on time interval [t; t;+1]:
for k=N, to N,
Set tin := ti, toyr := tis1, and Y[1:N] := U[1:N,k];
Call ODEsolver(Y, tin, tou:) to get solution Y at t =t
Save the solution by U[1:N,k]:= Y[1:N].
end for (k)
4. Adjust the value of U[1:N,N;:N,] according to Parts 1 and k by doing the following steps:
(1)  Send U[1:N4,N,] to the right neighboring processor by MPI_SEND;
(2)  Receive U[1:Ny,N,] from the left neighboring processor and save it to a buffer array B(1:N;) by MPI_RECV;
(3) Adjust the value of U (i.e., sliding one entry) by U[1:N1,Ns + 1:N,] := U[1:N1,Ns:N, — 1];
(4) Redefine the value of U[1:Ny,Ni] by setting U[j,1] := gi(tou) for j=1 to Ny if M, =0, and U[1:Ny,N;] := B[1:N4] if
M, > 1.
5. Increase i by 1 and go to Step 3 if i < m — 1; otherwise, exit the i-loop of time.

In summary, the generalized BTEX method is a general procedure for solving the general BTEX model of Eq. (1). It is de-
fined on a particular grid mesh of Eq. (6), and solves the BTEX model of Eq. (1) in m time steps. At each time step of the gen-
eralized BTEX method, n independent ODE initial value problems, as defined in Eq. (14), are produced as an approximation to
the BTEX model. Here each ODE system has the same size as the BTEX model and can be solved independently by a numerical
ODE solver. Moreover, the method can be easily and efficiently implemented in parallel on a multiprocessor computer. Based
on the spatial grid point partition, a good load balance can be simply achieved by assigning the same number of ODEs to each
processor, and the parallel implementation of the generalized BTEX method only involves relatively little interprocessor
communication. Since the most computing costs come from solving the ODEs, the performance of the method is strongly
related to the efficiency of the numerical ODE solver.

5. Accuracy testing of the generalized BTEX method

To verify the accuracy of the numerical solutions produced by the generalized BTEX method, we made numerical exper-
iments on the BTEX method for solving the Sangren-Sheppard model [26], which is a special case of the general BTEX model
of Eq. (1) with N = 2 and N; = 1. The Sangren-Sheppard model has the analytical solution in terms of the first-order modified
Bessel function of the first kind. A comparison of our numerical solutions with those obtained from the method of lines was
also made since the method of lines is a popular procedure for solving time-dependent PDE problems [15,28,27].

The Sangren-Sheppard model can be described as follows:

f’ai;:—a‘%j—",’—j(u] — 1), (18)
Ge= i —up)
2

where uq(x,t) and u,(x,t) are the concentrations in the capillary blood and interstitial fluid (ISF) spaces, a is the blood velocity
in the capillary, Ps is the permeability-surface area product for the exchange between the capillary and ISF, and V; and V; are
the volumes of distribution of the given solute in the blood and ISF.

With the initial conditions u;(x,0) =0, ux(x,0) = 0 and the boundary condition u;(0,t) = % §(t), the analytical solution of
Eq. (18) can be found as below:

Ps N P )

Do~ 5(t — %) + % Vz{ ( V1> Py S

ul(x’ t) = re 5(t a) e V1Vz(vt/)<—1)11 (ﬁ) t= X/a’
0, t<x/a,

and

Pl (V2
Uz(XJ'): {%’5‘29 v2[ ( Vl)]lo(ﬂ)7 t ;x/a
0, t <x/a,

where 0 < x < L,0 <t <T,Iyand I; are the zeroth-order and first-order modified Bessel functions of the first kind [22], q, is

. L. . . A ) . 1/2
the finite mass injected into the capillary, F = a V4/L, 5(t) is the Dirac delta function, = FL/V1, and f = 2P; [f];’;/jz)"] .Here F

is the blood flow to the tissue, and the boundary condition at x = 0, and the initial and boundary conditions simulate that a
spike of finite mass q, is injected into the capillary at position x =0 at time t = 0.

If flow F and volumes V; and V., are expressed relative to total mass of tissue (for example, in units of ml min~! g~! and
ml g~ !, respectively), then the injected mass q, is expressed in units of moles per mass of tissue. The finite mass injected at
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x =0 results in an infinitely high concentration in an infinitely small volume. In the numerical tests reported in Figs. 2 and 3,
weset L=1,T=1.5,a=0.33,F=1/60,V; =0.05,V,=0.2,P;=0.1,q0= 1.0, and h = L/n for n=10,50,100,150,200 and 250.

Fig. 2 displays the relative errors of the generalized BTEX method for solving the Sangren-Sheppard model as an increas-
ing function of the spatial step length h. The accuracy of the method is second-order with respect to the step length h (or t
since 7 = h/a). The relative errors displayed in the figure were computed by using the formulas

Vi [Uinl) - i, 0
S [ui(x;, 1))

where U; x(j) denotes the approximate value of u;(x;,t),h =L/n,x;=j h, and t=1.5.

Fig. 3 compares the numerical solutions produced by the generalized BTEX method with the analytical solutions and the
numerical solutions produced by the method of lines. Here h = L/50. From the figures we can see that the numerical solutions
by the generalized BTEX method match the analytical solutions, and that the generalized BTEX method has higher accuracy
in approximating the Sangren-Sheppard model than the method of lines. In fact, at ¢t = 1.5, both u(x,t) and uy(x,t) have a
jump discontinuous point and uq(x,t) has an impulse at x = 0.5. The generalized BTEX method resolves the impulse as a single
point with total mass corresponding to the impulse part of u;(x,t). The impulse is not shown in the figure for the axis scale
used. In the method of lines, numerical diffusion spreads the impulse and the method does a poor job in approximating the
jump discontinuity.

fori=1,2,

6. Parallel performance of the generalized BTEX Method

We developed a parallel program package for the generalized BTEX method in FORTRAN 77 and Message Passing Interface
(MPI) library [1], and tested it for solving the coupled blood-tissue transport and metabolism model proposed in [4]. In this
package, the Livermore ODE Solver DLSODES [16,25] is called for solving each ODE system associated with each spatial grid
point. Since the source functions f; of the model are defined implicitly in several levels of relation identities, it is difficult to
obtain their explicit analytical expressions for partial derivatives. Hence, we used the method flag MF = 222 in DLSODES, the
BDF (backward differentiation formula) method, which is also known as Gear’s method or a variable order and multi-step
method [9] and a numerical Jacobian matrix estimated by finite difference formulas for solving each ODE. In addition, the
following optional values were set in DLSODES for our numerical tests:

e Relative tolerance is set rtol = 10~% and the absolute tolerance is set atol = 10~'° such that the local error of uy is less than
rtol|Uy| + atol, where Uy is a numerical solution in the kth step.

e The time step size dt of the ODE numerical solver is set to satisfy 1073 < dt < 1071°,

e The initial timestep is set to dt = 10"'° in the BDF.

Numerical experiments were made on a distributed-memory parallel computer (the HP Linux Integrity Superdome Clus-
ter at the Medical College of Wisconsin) and a shared-memory parallel computer (the SGI Origin 2000 at the University of
Wisconsin-Milwaukee). Each node of the HP cluster is one HP R2600 Integrity server, which has two 1.3 GHz Intel Itanium 2
processors, and 4 Gbytes main memory. The cluster private interconnect is 1 Gb Ethernet HP Procurve 2824 J4903A switch.

—— Numerical solution to u;

1799l Numerical solution to ug

0.376

Relative Error

0.027f
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Spatial Step Length h

Fig. 2. The relative error of the generalized BTEX method for solving the Sangren-Sheppard model is a increasing function of the spatial step length h.
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Fig. 3. Comparison of the numerical solution of the generalized BTEX method (left figure) with that of the method of lines (right figure) for solving the
Sangren-Sheppard model, a special example of (1) with N; =1 and N = 2. Here the spatial grid size h=1/50,L=1 and t=1.5.

Each processor of SGI Origin 2000 is R12000 with 400 MHz. The total main memory is 8 Gbytes. Here we used the same
boundary and initial value functions and the same data as the ones from [4] to evaluate the functions f;. We set N; =1,
N=30,L=550, T=20, and a = 144.7875. The grid mesh was made by h = L/n with n=2048 and 7 = h/a = 1.8548 x 10>, This
resulted in a total number of 10782 time steps (m = 10,782) for the time interval [0, 20]. Hence, the total number of the ODE
initial value problems to be solved in the generalized BTEX method was 22,081,536.

The parallel performances of the generalized BTEX method on the SGI Origin 2000 and HP Linux Cluster are shown in Figs.
4 and 5, respectively. Total CPU time, total interprocessor data communication time, and associated speedups are shown in
the figures. From the figures we see that the HP Cluster ran about 3 times faster than the Origin 2000, and had a better par-
allel performance; it only took about 13 min for the BTEX method to solve the model on 16 processors. It is interesting to
note that the communication time is fluctuant on the HP Cluster while decreasing on the SGI Origin 2000. Although the total
number of ODEs assigned to each processor was almost the same, the total CPU time and the total interprocessor commu-
nication time required to solve them on each processor were different. In the figures, the largest of them are reported. Also,
we note that total communication time becomes a serious factor affecting the parallel efficiency when the number of pro-
cessors is increased. Although interprocessor communication involves only one real number to be sent and received at each
time step of generalized BTEX method, its cost becomes large after carrying out 10,782 time steps due to the overhead costs
of the sending and receiving operations. Even so, a speedup of 11.15 on 16 processors represents a good parallel performance
for the generalized BTEX method. A larger speedup is possible by using a smaller value of h since more ODE systems can be
generated such that each processor has more jobs to do to reduce the overhead of interprocessor communication.
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Fig. 4. Parallel performance of the generalized BTEX algorithm on an SGI Origin-2000 machine.
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Fig. 5. Parallel performance of the generalized BTEX algorithm on an HP Linux Cluster.
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Fig. 6. Comparison of the partial pressures P; and P; of oxygen in the capillary and the cell region as functions of the scaled distance along the capillary
length. The generalized BTEX method is to solve the Beard model of coupled blood-tissue oxygen transport and oxidative energy metabolism [4]. The model
parameters are set as in [4].

A representative model simulation of steady-state oxygen profile is illustrated in Fig. 6, which compares the oxygen par-
tial pressures P; and Ps in the capillary and the cell region calculated on a large grid (n =2048) with that on a small grid
(n=32) as a function of the scaled distance along the capillary length (in x/L). The model simulations were performed using
the parameter values representative of normal physiological conditions in the working cardiomycytes at moderate work rate
(see [4] for details). Specifically, for these simulations, the total pool of exchangeable phosphate in the myocytes was set to
TPP=15mM, blood flow was set to F=0.75mlmin~! (g tissue)”!, and the rate of ATP consumption was set at
Jace=0.45 mmol s~ (I cell)~'. The input arterial Py, was assumed to be 100 mmHg. Other model parameters values repre-
senting cellular energy metabolism are set as in Beard [4]. The steady-state corresponds to T =20 min.

These model solutions match well with the simulations of Beard [4] (see Fig. 1B in [4]). These solutions suggest that oxy-
gen partial pressures decrease from the arterial (x = 0) to the venous (x = L) end of the capillary, and decrease from the cap-
illary region to the cellular region. The rate of cellular oxygen consumption and oxygen extraction at the venous end
corresponding to these simulations were found to be 5.3 mol min~! (g tissue)~! and 76%, respectively, values consistent with
a moderate rate of cardiac work [4]. The model simulations in Fig. 6 show that the solutions with n = 2048 do not differ sig-
nificantly from the solutions with n = 32, suggesting that the solutions are accurate enough for mesh grids with n =32. As
shown in Figs. 4 and 5, a typical steady-state simulation of Beard model of coupled blood-tissue transport and metabolism
[4] using our generalized BTEX algorithm is significantly faster than that obtained using the traditional BTEX algorithm [2]
with comparable grid sizes and accuracy criteria. Therefore, this new generalized BTEX algorithm will be critical for the anal-
ysis of experimental data on blood-tissue transport and reactions, which requires repeated computation of solutions of the
governing PDEs and comparison of the experimental data to the corresponding model outputs.
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7. Discussions and conclusions

In this paper, we have presented an improved algorithm called the generalized BTEX (blood-tissue exchange) algorithm
for solving a general blood-tissue transport and metabolism model governed by a system of one-dimensional semilinear first
order partial differential equations (PDEs). We have also discussed its parallel implementation and parallel performance on
both distributed-memory and shared-memory computers. Our method is a general procedure to convert the model problem
approximately into many ODE initial value problems based on a special grid mesh with the time and spatial step sizes t and
h satisfying th = a, where a is a speed of blood transport in the capillary. All these ODE problems have been shown to be inde-
pendent of each other and to retain the size of the original model problem. Hence, they can be solved independently by an
efficient ODE solver such as DLSODES. In this sense, the generalized BTEX algorithm is naturally a parallel algorithm, which
can be easily implemented on a multiprocessor computer.

Note that most blood-tissue transport and metabolism models possess the stiffness spanning over multiple time scales
since different species interact with each other between different blood-tissue regions. Hence, one favorable approach is
to convert such a model to one or many ODE initial value problems so that a proper stiff ODE solver can be used to treat
the stiff properties of the model problem. In fact, many stiff ODE algorithms and software packages have been developed
in the numerical ODE research field over the years [9,16,14,13,19,25]. Several such approaches have been available in the
current literature (for solving the PDEs by converting them into ODEs), and the most popular one is the method of lines
[15,27,28]. Most of these approaches approximate the model problem as only one large-scale ODE initial value problem,
which may be difficult to solve since most stiff ODE algorithms are implicit, which involve numerical solutions of nonlinear
algebraic systems at each time step, may produce a prohibited computing expenses, and may be very difficult to be imple-
mented in parallel on a parallel computer. In contrast, all the ODE systems produced from our generalized BTEX method have
the same size as that of the model problem, which is relatively very small (e.g. order of tens so far). Hence, our generalized
BTEX method provides a better way to solve large-scale coupled blood-tissue transport and metabolism models than the
method of lines [15,27,28] or even the traditional Lagrangian sliding fluid element algorithm [2]. The suggested generalized
BTEX algorithm is accurate and robust which is demonstrated by comparing the analytical solutions of the Sangren and
Sheppard model [26] with the numerical solutions obtained from the generalized BTEX algorithm as well as from the method
of lines, showing the priority of the generalized BTEX algorithm over the method of lines.

The generalized BTEX algorithm is motivated by the Lagrangian sliding fluid element algorithm of Bassingthwaighte et al.
[2], which was proposed in 1992. Compared to the Lagrangian sliding fluid element algorithm, our generalized BTEX algo-
rithm is mathematically formalized and has been demonstrated to be suitable for fast numerical solutions of large-scale cou-
pled blood-tissue transport and metabolism models, governed by one-dimensional semilinear PDEs, which is important for
physiological applications in the analysis of experimental data (e.g. see [4,31-33]). As a computational algorithm, the gen-
eralized BTEX algorithm needs to be further developed and analyzed on its error estimations and convergence properties.
This will be taken up in our subsequent papers. Furthermore, the generalized BTEX algorithm will need to be extended to
handle diffusive terms which will be suitable for numerical solutions of large-scale one-dimensional microcirculatory advec-
tion-diffusion-reaction models.

Acknowledgments

This work was supported by NIH Grants RO1-EB005825 and RO1-HL072011. The authors thank the anonymous referees
for their valuable comments.

References

[1] MPI: A Message-Passing Interface Standard. Knoxville, Tennessee, June 2008.

[2] J.B. Bassingthwaighte, 1.S.J. Chan, C.Y. Wang, Computationally efficient algorithms for convection-permeation-diffusion models for blood-tissue
exchange, Annals of Biomedical Engineering 20 (1992) 687-725.

[3] J.B. Bassingthwaighte, C.A. Goresky, Modeling in the analysis of solute and water exchange in the microvasculature, in: E.M. Renkin, C.C. Michel (Eds.),
Handbook of Physiology. Section 2, The Cardiovascular System, vol. IV, The Microcirculation, American Physiological Society, Bethesda, MD, 1984, pp.
549-626.

[4] D.A. Beard, Modeling of oxygen transport and cellular energetics explains observations on in vivo cardiac energy metabolism, PLoS Computational
Biology 2 (2006) 1093-1106.

[5] D.A. Beard, J.B. Bassingthwaighte, Modeling advection and diffusion of oxygen in complex vascular networks, Annals of Biomedical Engineering 29
(2001) 298-310.

[6] D.A.Beard, K.A. Schenkman, E.O. Feigl, Myocardial oxygenation in isolated hearts predicted by an anatomically realistic microvascular transport model,
American Journal of Physiology Heart Circulation Physiology 285 (5) (2003) H1826-H1836.

[7] R.P. Beyer, ].B. Bassingthwaighte, A.]. Deussen, A computational model of oxygen transport from red blood cells to mitochondria, Computer Methods
and Programs in Biomedicine 67 (2002) 39-54.

[8] B. Chapman, G. Jost, R. van der Pas, Using OpenMP: Portable Shared Memory Parallel Programming, MIT Press, Cambridge, MA, USA, 2007.

[9] CF. Curtiss, J.O. Hirschfelder, Integration of stiff equations, Proceedings of the National Academy of Science 38 (1952) 235-243.

[10] R.K. Dash, ]J.B. Bassingthwaighte, Simultaneous blood-tissue exchange of oxygen, carbon dioxide, bicarbonate and hydrogen ion, Annals of Biomedical
Engineering 34 (7) (2006) 1129-1148.

[11] A. Deussen, J.B. Bassingthwaighte, Modeling [150]oxygen tracer data for estimating oxygen consumption, American Journal of Physiology Heart
Circulation Physiology 270 (1996) H1115-H1130.

[12] W. Gropp, E. Lusk, A. Skjellum, Using MPI: Portable Parallel Programming with the Message-Passing Interface, second ed., MIT Press, Cambridge, MA,
USA, 1999.



D. Xie et al./Journal of Computational Physics 228 (2009) 7850-7861 7861

[13] E. Hairer, G. Wanner, Stiff differential equations solved by Radau methods, Journal of Computational Applied Mathematics 111 (1999) 93-111.

[14] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, second ed., Springer, Berlin, 2002.

[15] S. Hamdi, W.E. Schiesser, G.W. Griffiths, Method of lines, Scholarpedia, Article 2859 (2007).

[16] A. Hindmarsh, Odepack: a systemized collection of ODEsolvers, in: R. Stepleman (Ed.), Scientific Computing. American Physiological Society, North-
Holland, Amsterdam, 1983.

[17] M.L Kettunen, O.H. Grhn, M.J. Silvennoinen, M. Penttonen, R.A. Kauppinen, Quantitative assessment of the balance between oxygen delivery and
consumption in the rat brain after transient ischemia with t2-bold magnetic resonance imaging, Journal of Cerebral Blood Flow and Metabolism 22 (3)
(2002) 262-270.

[18] A. Krogh, The number and distribution of capillaries in muscle with calculations of the oxygen pressure head necessary for supplying the tissue, Journal
of Physiology 52 (1919) 409-415.

[19] S. Li, L.R. Petzold, Software and algorithms for sensitivity analysis of large-scale differential-algebraic systems, Journal of Computational Applied
Mathematics 125 (2000) 131145.

[20] Z. Li, T. Yipintsoi, J.B. Bassingthwaighte, Nonlinear model for capillary-tissue oxygen transport and metabolism, Annals of Biomedical Engineering 25
(1997) 604-619.

[21] Robert C. McOwen, Partial Differential Equations: Methods and Applications, second ed., Prentice-Hall, Upper Saddle River, NJ, 2003.

[22] F.W.]. Olver, Bessel functions of integer order, in: M. Abramowitz, L.A. Stegun (Eds.), Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, Chapter 9, National Bureau of Standards, Washington DC, 1964, pp. 355-436.

[23] J. Pekar, T. Sinnwell, L. Ligeti, A.S. Chesnick, ]J.A. Frank, A.C. McLaughlin, Simultaneous measurement of cerebral oxygen consumption and blood flow
using '70 and '°F magnetic resonance imaging, Journal of Cerebral Blood Flow and Metabolism 15 (2) (1995) 312-320.

[24] A.S. Popel, Theory of oxygen transport to tissue, Critical Review in Biomedical Engineering 17 (1989) 257-321.

[25] K. Radhakrishnan, A.C. Hindmarsh, Description and use of LSODE, the Livermore solver for ordinary differential equations. Technical Report 1327,
NASA, NASA, Washington DC, 1993.

[26] W.C. Sangren, C.W. Sheppard, A mathematical derivation of the exchange of a labeled substance between a liquid flowing in a vessel and an external
compartment, Bulletin in Mathematical Biology 15 (4) (1953) 387-394.

[27] W.E. Schiesser, The Numerical Method of Lines, Academic Press, San Diego, 1991.

[28] W.E. Schiesser, C.A. Silebi, Computational Transport Phenomena, Cambridge University Press, New York, 1997.

[29] ].C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, second ed., SIAM, Philadelphia, 1994.

[30] E.F. van De Velde, Concurrent Scientific Computing, Springer-Verlag, New York, 1994.

[31] F. Wu, ]J. Zhang, D.A. Beard, Experimentally observed phenomena on cardiac energetics in heart failure emerge from simulations of cardiac metabolism,
Proceedings of the National Academy of Sciences of the USA 106 (2009) 7143-7148.

[32] F. Wu, D.A. Beard, Roles of the creatine kinase system and myoglobin in maintaining energetic state in the working heart, BMC Systems and Biology 3
(2009) 22.

[33] F. Wu, E.Y. Zhang, J. Zhang, RJ. Bache, D.A. Beard, Phosphate metabolite concentrations and ATP hydrolysis potential in normal and ischaemic hearts,
Journal of Physiology-London 586 (2008) 4193-4208.



	An improved algorithm and its parallel implementation for solving a  general blood-tissue transport and metabolism model
	Introduction
	A general blood-tissue exchange model
	Generalized BTEX algorithm for solving the general BTEX model
	Parallel implementation of generalized BTEX algorithm
	Accuracy testing of the generalized BTEX method
	Parallel performance of the generalized BTEX Method
	Discussions and conclusions
	Acknowledgments
	References


